
A Framework for Dynamic Constraint Reasoning
using Procedural Constraints

Ari K. J ónsson1 and Jeremy D. Frank 2

Abstract.
Many complex real-world decision problems, such as planning,

contain an underlying constraint reasoning problem. The feasibility
of a solution candidate then depends on the consistency of the asso-
ciated constraint problem instance. The underlying constraint prob-
lems are invariably dynamic, as higher level decisions result in vari-
ables, values, and constraints being added and removed. In real-world
reasoning applications, constraints may be arbitrarily complex, vari-
ables may have continuous domains, and neither variables nor val-
ues may be effectively enumerable beforehand. Such applications,
therefore, present a number of significant challenges for a dynamic
constraint reasoning mechanism.

In this paper, we introduce a general framework for representing
and reasoning about dynamic constraint networks arising from com-
plex real-world applications. It is based on the use of procedures
to represent and effectively reason about general constraints. The
framework can handle arbitrary changes to the network, including
the addition and deletion of variables and values. It can reason with
real-valued variables, and utilize special-purpose reasoning meth-
ods, such as arithmetic problem solving, in the form of procedures.
The resulting framework is based on a sound theoretical foundation,
which guarantees termination and correctness.

1 Introduction

Constraint reasoning has been proven to be an effective technique
for representing and reasoning about a variety of real-world decision
problems. Many important problems, including a variety of schedul-
ing problems, have successfully been represented and solved as con-
straint satisfaction problems. However, static constraint problems are
not sufficiently expressive for complex problem domains, such as
real-world planning.3 Such complex problems contain a changing set
of variables and constraints, which must be represented as dynamic
constraint networks.

The importance of dynamic constraint reasoning is well known.
Many researchers have explored dynamic constraint problems and
developed techniques to reason about them. There are two standard
definitions for dynamic constraint problems. Mittal and Falkenhainer
[10] define them as a set of variables and constraints, in which vari-
able assignments determine whether parts of the problem are active

1 Research Institute for Advanced Computer Science, NASA Ames
Research Center, Mailstop 269-2, Moffett Field, CA 94035, email:
jonsson@ptolemy.arc.nasa.gov

2 QSS Group, Inc., NASA Ames Research Center, Mailstop 269-3, Moffett
Field, CA 94035, email: frank@ptolemy.arc.nasa.gov

3 Static constraint reasoning has been used successfully to solve bounded
planning problems, but those are of lower complexity than general planning
problems.

or not. Dechter and Dechter’s definition [3] is more general, as the
sets of possible constraints and variables are not enumerated before-
hand. However, the definition is limited to a predetermined domain
for each variable. It is also worth noting that much of the work done
in dynamic constraint reasoning has not considered dynamic prob-
lems which evolve by new variables being added.

In the most general sense, the problem of dynamic constraint rea-
soning can be viewed as providing constraint reasoning capabilities
to a higher-level task that involves an underlying dynamic constraint
problem. The high-level task in question can be a complex planning
problem, a configuration problem, a design synthesis problem, a di-
agnosis problem, or any of a number of other important autonomous
reasoning applications. The responsibility of the dynamic constraint
reasoning framework is to represent the network, support modifica-
tions to the network, and to provide information about the state of the
network. The general architecture is shown in Figure 1.

Dynamic Constraint 
Reasoning 

System

Task

Modifications: 
add/remove constraints 
add/remove variables 
add/remove values

Status: 
is consistent 

is inconsistent 
eliminated values

Figure 1. The architecture for dynamic constraint reasoning in support of a
higher-level task involving a dynamically changing constraint network.

Recent developments in autonomous reasoning for complex real-
world problems have pointed out significant shortcomings in current
dynamic constraint reasoning techniques. This has been crystallized
in the development of the Remote Agent planning technology, which
is part of an effort to build autonomous control systems for remote
spacecraft. The original Remote Agent planner was tested onboard
the Deep Space One spacecraft in a landmark experiment that took
place in May 1999. Since then, the Remote Agent planning tech-
nology has been under continuous development, both to formalize
and clarify the constraint-based planning approach, and to build a
reusable framework for future applications.

The requirements for such real-world applications have been well
beyond the capabilities of existing dynamic constraint reasoning sys-
tems. The complexity of the applications, combined with the desire



for a domain-independent system, requires that the constraint rea-
soning system be able to represent and effectively utilize arbitrary
constraints. This includes specialized reasoning methods for domain-
specific elements, such as solving arithmetic equations. In addition,
real-valued variables must be represented and reasoned about.

In this paper, we outline a general framework for dynamic con-
straint reasoning, with many capabilities that are missing from tradi-
tional dynamic constraint approaches. Among those are:

� Arbitrary constraints – there is no limit on the types of constraints
that can be handled

� Dynamic variables – the set of variables need not be enumerated
beforehand

� Dynamic domains – the set of values for certain variables, such
as those representing dynamic entities, need not be enumerated
beforehand

� Real-valued variables – constraints may involve mixtures of dis-
crete and continuous variables

� Hybrid reasoning – different reasoning techniques can be utilized
within the same constraint network

The resulting framework has been implemented and incorpo-
rated into the next generation Remote Agent planning system [8].
Nonetheless, the framework is independent of the planning system
and can be utilized in other applications where dynamic constraint
reasoning is needed.

We begin by giving a brief introduction to the new Remote Agent
planner in the next section, as an example of a complex real-world
autonomous reasoning system that requires all the capabilities of our
framework. We then go on to give a quick overview of the key con-
cepts in dynamic constraint reasoning. Next, we turn our attention
to the concept of procedural reasoning, which is the foundation on
which our framework is built. In the following section, we present
the overall framework and briefly mention some of its properties and
capabilities. We conclude by reviewing our contributions and how
this work will progress in the future.

2 The Remote Agent Planning Approach

To motivate the need for the capabilities provided by our dynamic
constraint reasoning framework, we look at the Remote Agent (RA)
planning paradigm [9].

In the RA planning approach, the world is described with state
variables (also called timelines), whose values change over time. The
values for a given state variable are the possible actions and states for
that state variable. These values are described in terms of predicates,
which provide a uniform representation of both complex actions and
parameterized states. For an example, consider a state variable that
describes the attitude of the spacecraft. The possible values for this
state variable are turn(x,y), to represent that the spacecraft is
turning from coordinate x to coordinate y, and pointing(x) to
represent that the spacecraft maintains its orientation towards coor-
dinate x.

The states and actions have temporal extents. To represent this, in-
tervals are used to describe a state variable maintaining a value for
some duration. Each interval is described using a set of CSP vari-
ables. The temporal aspects of an interval are described using vari-
ables that represent the start time, the end time, and the duration of
the interval. The remaining aspects, the parameters of the predicate,
are also described by a set of CSP variables. Based on this notion, the
evolution of a state variable is described by a sequence of intervals,
connected by temporal constraints.

Planning axioms specify relations between intervals, enforcing
preconditions, effects, enabling conditions, mutual exclusions, etc.
These axioms give rise to constraints between the different CSP vari-
ables that describe the different intervals. The constraints can be ar-
bitrarily complex, and may be domain-dependent, such as non-linear
numerical bounds on available solar power. The use of exhaustive
enumeration of tuples for such constraints, while theoretically use-
ful, is too inefficient for real applications. In addition, applications
of the RA planner, like many other real-world applications, often
involve real-valued variables. Although many constraints over con-
tinuous variables have no closed solutions, the constraint reasoning
component must nonetheless be able to handle such variables in a
well-behaved and effective manner.

The planning axioms also give rise to new intervals, to achieve pre-
conditions, describe effects, and so on. Each interval must be placed
on an appropriate state variable, as part of the planning process. Con-
strained variables are used to describe the possible placement of sub-
goal intervals. Note that the domain of those variables must be ex-
tendable, as the addition of other intervals on the same state variable
may change the set of possible locations 4.

The variables and the constraints used in this planning approach
give rise to a constraint network for each candidate plan. In order
for the candidate plan to be valid, the underlying constraint prob-
lem must have a valid solution. As planning decisions are made, the
constraint network changes; adding intervals leads to new variables,
values and constraints, while removing intervals results in variables,
values and constraints being removed.

Supporting the dynamic constraint reasoning for such complex
real-world applications requires extensive capabilities. The higher
complexity of planning makes it infeasible to specify the set of vari-
ables that may be encountered. The generality of the approach re-
quires the ability to handle arbitrary constraints, including complex
relations that cannot be specified by enumerating the allowed or dis-
allowed combinations. Furthermore, the network may involve real-
valued variables and specialized reasoning methods to handle those.
The constraint network is also highly dynamic, as there are no bounds
on the modifications made by the higher-level planning task. Not
only do the changes depend on the planning domain, but also on the
search technique employed in the high-level reasoning task. Finally,
the constraint reasoning must be correct and efficient.

3 Dynamic Constraint Reasoning

A constraint satisfaction problem can be thought of as a set of vari-
ables, each of which must be assigned a value from a given domain,
and a set of constraints, each of which limits the set of allowed com-
bination of variable assignments. Formally,

Definition 1 (CSP) A constraint satisfaction problem (CSP) is a
triple C = (X;D;K), where:

1. X = fx1; : : : ; xng is a set of variables
2. D = fDx1

; : : : ;Dxn
g a set of variable domains, one for each

variable
3. K is a set of constraints, each of which is a pair k = hY;Ri,

where Y = xi1 ; : : : ; xik is the scope of the constraint, andR is a
relation over the domains of the scope, i.e,R � D x

i1
�� � ��Dx

i
k

A solution to a constraint satisfaction problem is a complete set
of assignments of values to variables, such that all constraints are
satisfied:
4 See [5] for a recently developed alternative to using dynamic domains.



Definition 2 (Solution) A valid solution to a constraint satisfaction
problem C = (X;D;K), where X = fx1; : : : ; xng, is an n-tuple
(vx1 ; : : : ; vxn ), such that:

1. vx
k
2 Dx

k
for k = 1; : : : ; n, and

2. For any (Y; R) 2 K with Y = fxi1 ; : : : ; xikg, we have
(vx

i1
; : : : ; vx

i
k

) 2 R.

A constraint problem that has at least one solution is called consis-
tent. Constraint problems that have no solutions are called inconsis-
tent. If every combination of variable assignments is a solution, the
constraint problem is solved.

In many applications with underlying constraint problems, the
constraint network changes as higher-level decisions are made. How-
ever, each problem is closely related to the previous one, making it
more effective to view the constraint problem as a dynamic problem,
rather than as a sequence of individual static problems. Current for-
malizations of dynamic constraint networks are too weak to describe
the changes that may occur in a complex domain, e.g., dynamic do-
mains are not handled. We therefore provide a definition of dynamic
constraint satisfaction that is more general than previous definitions.

Definition 3 (Dynamic CSP) Let C = (X;D;K) be a constraint
satisfaction problem. Any problem of the form C 0

= (X 0;D0;K 0
)

such thatX 0
� X (i.e. there are more variables),D 0

x
� Dx for each

x 2 X (i.e. there are fewer legal values for variables) and K 0
� K ,

(i.e. there are fewer legal combinations for variables in a constraint)
is a restriction of C . Any problem of the form C 0

= (X 0;D0;K 00
)

such that X 0
� X (i.e. there are fewer variables), D 0

x
� Dx for

each x 2 X (i.e. there are more values for variables) and K 0
� K

(i.e. there are more legal combinations for variables in a constraint),
is a relaxation of C . A Dynamic Constraint Satisfaction Problem or
DCSP is a sequence of constraint satisfaction problemsC 0; C1; : : :,
such that each problemC i is a restriction or a relaxation of Ci�1 .

This definition allows us both to add and delete variables, and to
add and delete domain values, in addition to modifying the set of
constraints.

We are mainly interested in the consistency of each constraint
problem instance. The reason is that an inconsistent underlying con-
straint network invariably indicates that the higher-level solution can-
didate is invalid.

4 Procedural Reasoning

Many applications of dynamic constraint reasoning are designed and
implemented for specific domains with predetermined types of vari-
ables, domains and constraints. In contrast, general-purpose model-
based reasoning system can give rise to arbitrary domains with arbi-
trary constraints. To support such systems, and to retain generality,
our dynamic constraint reasoning mechanism must allow arbitrary
constraints to be specified, and must be capable of handling them ef-
fectively. At the same time, efficient constraint reasoning is essential
for many autonomous control applications. To achieve this, we uti-
lize the notion of procedural reasoning, which has recently been for-
malized in the context of constraint satisfaction [7]. Procedures were
initially developed to make constraint reasoning more effective, but
are also useful for specifying and using arbitrary constraints. We now
give a brief overview of procedures and some of the related concepts
and results.

The most general notion of a procedure encompasses a wide range
of constraint reasoning techniques, from simple propagation to com-
plete search methods:

Definition 4 (Procedure) A procedure p is a function that maps a
CSP C = (X;D;K) to another CSP C 0

= (X;D0;K 0
) that has

the same variables asC , such that:

1. D0

x
i

� Dx
i

for each xi
2. For every k = (Y;R) 2 K there exists a constraint k 0

=

(Y;R0
) 2 K 0, such that k and k 0 have the same scope, and

R0
� R.

This definition permits a procedure to eliminate values from variable
domains, restrict existing constraints, and add new constraints.

Since procedures are so general, we need to distinguish between
procedures, based on their effects on the set of solutions. At a first
glance, one might expect that a procedure should preserve all solu-
tions to a constraint network. However, there are many useful proce-
dures, such as symmetry breaking, that do not satisfy this strong cri-
terion. Such procedures may eliminate some solutions, but are guar-
anteed to not eliminate all solutions. Formally:

Definition 5 (Correctness) A procedure p is correct if the set of so-
lutions to p(C) is the same as the set of solutions toC . A procedurep
is weakly correct if p(C) has a solution wheneverC has a solution.

The general notion of a procedure permits the addition of arbitrary
numbers of new constraints to the problem. For many applications,
such problem growth cannot be handled effectively. Therefore, a re-
stricted class of procedures is defined, consisting of procedures that
cannot add any new constraints. As a result, such procedures are lim-
ited to eliminating values from variable domains:

Definition 6 (Elimination Procedure) An elimination procedure p
is a procedure that preserves the set of constraints. In other words,
p(X;D;K) = (X;D0;K).

In the currently implemented framework, we have limited our-
selves to elimination procedures, because of the cost associated with
added constraints, and the unavoidable utility problem that follows.

It is straightforward to see that under easily satisfied conditions, an
elimination procedure can be used to represent and enforce any con-
straint. The only necessary conditions are that the mapping p never
eliminates a member of a domain that is a part of a solution, and
that if each given domain is a singleton, then p maps the tuple into
a tuple with an empty domain if and only if the singleton values do
not satisfy the given constraint. Just as importantly, the procedure
can be implemented such that it enforces the constraint much more
efficiently, both in time and space, than a declarative description of
the allowed or disallowed tuples. As an example, an arithmetic con-
straint can be enforced more efficiently by direct calculations than by
declarative axioms or exhaustive listing of valid solutions.

Certain classes of procedures and search engines have useful the-
oretical properties, most notably regarding correctness, systematic-
ity and completeness. Jónsson [7] proved that, for a large class of
complete and systematic algorithms, the use of correct procedures
will not affect completeness or systematicity, and that search en-
gines satisfying certain conditions will remain complete and system-
atic, even when arbitrary sets of weakly correct extension procedures
are utilized. All well-known systematic algorithms, including non-
chronological techniques like dynamic backtracking [6], satisfy these
conditions.

In many constraint reasoning problems, it is only necessary to as-
sign values to a subset of the variables to determine consistency. For
example, in satisfiability algorithms like Davis-Putnam [2], as soon
as all clauses are satisfied, there is no need to instantiate remaining
variables. This notion is formalized in the concept of a decision set:



Definition 7 (Decision Set) Let p be a weakly correct procedure
and let C = (X;D;K) be a CSP. A set of variables Y � X is
a decision set for C with respect to p, if, for any partial assignment
A to all the variables in Y , applying p to CA results either in a CSP
that is solved or a CSP with an empty variable domain.

To solve a problem, it is sufficient to assign values to variables in
the decision set, as the procedure can be used to determine if the rest
of the problem is solvable. This definition extends easily to a set of
procedures, giving us a clear definition for decision variables for ar-
bitrary sets of procedures. It should be noted that this definition gen-
eralizes the concept of control variables in satisfiability problems,
which is a set of variables from which the rest of the variables can be
given values using unit propagation alone.

5 Framework for Dynamic Procedural Reasoning

The concepts we have introduced, procedures and decision sets, are
the foundation of our general dynamic constraint reasoning frame-
work. Procedures give us a uniform and efficient method to represent
and apply constraints, while decision sets provide a general method
to support continuously valued variables.

Our implemented framework has three main purposes. One is to
represent the underlying constraint network, i.e., the variables, the
sets of possible values, and the constraints. The second is to support
network modifications, which are driven by a higher-level task. The
third responsibility is to determine or approximate the state of the
network, in particular regarding consistency or inconsistency.

In terms of modifying the network, the framework permits almost
arbitrary changes to be made:

� Add new variables – with discrete or real domains
� Remove existing variables
� Add new constraints – declarative or procedural
� Remove existing constraints
� Eliminate values from variable domains
� Restore previously eliminated values
� Add new values to variable domains

Our framework supports two types of constraints, declarative and
procedural. The declarative constraints are limited to a small set of
constraints, handled directly by the dynamic constraint reasoning
framework. Currently, those are:

� Equality and inequality constraints
� Distance constraints for temporal variables5

All non-declarative constraints are enforced by elimination proce-
dures. This approach allows us to incorporate arbitrary constraints
into the constraint network, without any changes to the constraint
reasoning engine. As was pointed out above, any constraint can be
formulated as an elimination procedure. To specify a new constraint,
all that needs to be done is to implement an elimination procedure
that enforces the constraint and then add the procedure directly to the
constraint network. The expressiveness of the framework is therefore
not limited to a predetermined set of constraints, which makes it truly
applicable to different problem domains.

Our framework also supports real-valued variables. Unfortunately,
sound and complete reasoning with arbitrary procedural constraints
over continuous variables is not possible. We therefore prohibit real

5 The temporal constraints form a simple temporal network which can be
handled using efficient reasoning techniques, as described in [4] and [12].

variables as decision variables. This means that the higher-level task
does not have to (but is allowed to) directly modify real-valued do-
mains in order to build a solved network. Instead, once a valid so-
lution is found to the set of decision variables, the procedures will
determine the valid values for non-decision variables, resulting in ei-
ther a solved network or an inconsistency. Note that this does not
preclude real-valued variables from participating in constraints, and
thus having an effect on the solvability of the problem.

The third main responsibility of our constraint reasoning frame-
work is to handle queries about problem instances. The information
provided in response to such queries includes:

� Whether the network is consistent – a solution exists
� Whether the network is inconsistent – no solution exists
� Which values can be eliminated – values proven not to be part of

any solutions

Due to the inherent intractability of determining these questions
exactly, the framework allows for approximate (but sound) answers 6.
Examples of sound approximations include only indicating that the
instance has not been proven to be inconsistent, and providing only
a subset of the values that can provably be eliminated from a do-
main. This trades off effectiveness (providing useful results) against
efficiency (cost of reasoning). The best known approaches to balanc-
ing this tradeoff are based on using limited consistency reasoning,
like achieving arc-consistency [1], and providing the approximate
answers based on the results.

The simplest approximation is based on a variation of a simple al-
gorithm for maintaining generalized arc-consistency. Given a change
in the constraint network, the algorithm determines a set of variables
W , whose set of consistent values may have been affected. If the
change is a combination of restrictions, findingW is straightforward;
enumerate new variables, variables appearing in new constraints and
variables with reduced domains. If the change includes a relaxation,
i.e., an expanded domain or a relaxed constraint, it is more diffi-
cult to specify a suitable W . Of course, the full set of variables is a
valid candidate, but it is often unnecessarily large. To reduce this set,
dependency information, based on recording which variables affect
other variables through constraints, can be used. For procedural con-
straints, a sound assumption is that each variable affects every other
variable in the scope. However, the dependency information can be
strengthened by extending procedural constraints to provide depen-
dency information. (See [7] for an example of extending procedures
to provide a specific type of dependency information.)

Given a set of variables W that includes all variables affected by
the change in the network, the algorithm works as follows:

1. if the network has been relaxed, reinstate all eliminated val-
ues for all variables in W

2. let A be the set of all constraints with scopes that overlap W

3. while A is not empty, do:

a) select and remove a constraint c from A

b) execute c to eliminate values from domains

c) if a domain becomes empty, return “inconsistent”

d) for any decision variable v whose domain is modi-
fied, add to A all constraints with v in their scope

4. return “not proven inconsistent”

6 Methods to determine consistency can easily be incorporated into this
framework, but such methods are rarely practical when supporting higher-
level problem solving.



The result returned by this algorithm is provably correct, given that
each procedure is at least weakly correct. Furthermore, if each con-
straint is correct, then no values participating in solutions have been
eliminated.

It should be noted that the algorithm will not achieve general arc-
consistency in all cases. The reason is that the procedural constraints
are not required to achieve arc-consistency when eliminating values
from the domains. However, it is straightforward to show that if each
procedural constraint enforces general arc-consistency internally, the
overall network will be arc-consistent.

The computational complexity of this algorithm is obviously tied
to the complexity of the procedural constraints in the network. Let
n be the number of variables in the network, let d be the size of the
largest discrete domain, let r be the arity of the largest constraint
and let e be the number of constraints. Then, if the worst-case time
complexity of executing a single procedure is O(f(r; d)), the over-
all algorithm runs in time O(d � n � e � f(r; d)). Replacing the pro-
cedure with a table-lookup that takes O(dr) in the worst case, we
find that the complexity is not as good as other versions of gener-
alized arc-consistency. This is not surprising, as no assumptions are
made about the constraint structures or efficiency. However, in al-
most all cases, the worst-case complexity of the procedures, f(r;d),
will be significantly less than dr . This is because the procedure can
directly calculate which values can be eliminated, rather than search
for possible support for them. Furthermore, procedures can take ad-
vantage of characteristics like the constraint being functional, sym-
metric, row-convex, etc. Finally, many of the speedup techniques in
arc consistency, such as maintaining support lists [11], can be incor-
porated into the procedures.

The overall functionality of the consistency achievement algo-
rithm is the same as that of a single procedure; namely, to eliminate
values and to identify inconsistencies. Consequently, the algorithm
can be viewed as a method for composing multiple procedures into a
single procedure. In the above algorithm, the composition is done
by repeated applications of the constraints until local quiescence.
Other combination methods may also be used, and as long as they
are limited to methods that only eliminate values, such as inverse
local consistency, the worst-case computational complexity will re-
main bounded by the complexity of the method, multiplied by the
complexity of executing the constraint procedures.

Our dynamic constraint reasoning framework has been imple-
mented and integrated into the new Remote Agent planner, provid-
ing the new planner with a well-founded and effective dynamic con-
straint reasoning mechanism. The generality of the framework has
been demonstrated by duplicating the constraint reasoning done dur-
ing the Remote Agent Experiment, and by applying it to other com-
plex domains, such as scheduling observations and downloads for
spacecraft with limited data storage capacity.

6 Conclusions and Future Work

The goal of this work is to develop a general-purpose framework for
performing dynamic constraint reasoning in real-world applications.
Such applications give rise to a number of issues that have tradi-
tionally not been handled in dynamic constraint reasoning, such as
special-purpose, domain-dependent constraints that are too complex
to be specified in tabular form. Many complex decision problems also
require that real-valued variables be handled, and although such vari-
ables rarely represent primary choices in the automated reasoning,
they must still be handled efficiently and effectively. Finally, real-
world applications demand more dynamicity than traditional defi-

nitions permit. For example, the variables involved in a planning
problem cannot be specified beforehand, as the number of actions
is only bounded by an exponential function. The value domains can-
not be predetermined either, as variables are often used to represent
dynamic entities, such as available actions or locations in action se-
quences.

In this paper, we have outlined an implemented framework for dy-
namic constraint reasoning, based on the notion of procedures. Pro-
cedures allow us to represent constraints in a uniform manner, with-
out requiring inefficient declarative specifications. They also enable
special-purpose reasoning techniques, such as solving linear equa-
tions, to be specified as part of the constraint network. The notion of
decision sets allows us to include real-valued variables, without los-
ing soundness or completeness. The result is a general, well-defined
framework for dynamic constraint reasoning that can be applied in a
number of different real-world problem domains.

Given the generality of the framework, much of our future work is
in applying it within different applications. Among the possible can-
didates are other complex planning and scheduling systems, configu-
ration systems, mixed-initiative problem solving systems and intelli-
gent design systems. There is also more work to be done on the theo-
retical side. For example, there is the question of which consistency-
maintenance techniques can be used effectively with procedural con-
straints. It is clear that overall consistency and inverse neighborhood-
consistency can be enforced by using the appropriate search tech-
niques in lieu of enforcing arc-consistency.

REFERENCES
[1] Christian Bessière and Jean-Charles Régin, ‘Arc consistency for gen-

eral constraint networks: Preliminary results’, in Proceedings of the
Fifteenth International Joint Conference on Artificial Intelligence, pp.
398–404, (1997).

[2] Martin Davis and Hilary Putman, ‘A computing procedure for quantifi-
cation theory’, Journal of the ACM, 7, 201–215, (1960).

[3] Rina Dechter and Avi Dechter, ‘Belief maintenance in dynamic con-
straint networks’, Proceedings of the Seventh National Conference on
Artificial Intelligence, 37–42, (1988).

[4] Rina Dechter, Itay Meiri, and Judea Pearl, ‘Temporal constraint net-
works’, Artificial Intelligence, 49, 61–95, (1991).

[5] Jeremy D. Frank, Ari K. Jónsson, and Paul H. Morris, ‘On reformu-
lating planning as dynamic constraint satisfaction’, in Proceedings of
Symposium on Abstraction, Reformulation and Approximation, (2000).

[6] Matthew L. Ginsberg, ‘Dynamic backtracking’, Journal of Artificial In-
telligence Research, 1, 25–46, (1993).

[7] Ari K. Jónsson, ProceduralReasoning in Constraint Satisfaction, Ph.D.
dissertation, Stanford University, Stanford, CA, 1997.

[8] Ari K. Jónsson, Paul H. Morris, Nicola Muscettola, and Kanna Rajan,
‘Next generation remote agent planner’, in Proceedings of the Fifth In-
ternational Symposium on Artificial Intelligence, Robotics and Automa-
tion in Space (iSAIRAS99), pp. 363–370, (1999).

[9] Ari K. Jónsson, Paul H. Morris, Nicola Muscettola, Kanna Rajan, and
Ben Smith, ‘Planning in interplanetary space: Theory and practice’, in
Proceedings of the Fifth International Conference on Artificial Intelli-
gence Planning Systems, pp. 177–186, (2000).

[10] Sanjay Mittal and Brian Falkenhainer, ‘Dynamic constraint satisfaction
problems’, in Proceedings of the Eighth National Conference on Artifi-
cial Intelligence, pp. 25–32, (1990).

[11] Roger Mohr and Thomas C. Henderson, ‘Arc and path consistency re-
visited’, ”Artificial Intelligence”, 28, (1986).

[12] Ioannis Tsamardinos, Nicola Muscettola, and Paul Morris, ‘Fast trans-
formation of temporal plans for efficient execution’, in Proceedings of
the Fifteenth National Conference on Artificial Intelligence, pp. 254–
261, (1998).


